戴森球计划增产攻略(增产和增速的全方位攻略)
可能计算不对,会慢慢修正!
这里主要针对的是加工工厂的总数量,也可以理解为总占地面积,或者是炉子+工作台的数量最小化,也可以理解为同面积同加工工厂所得到的最高效率方案。
简化计算
工作台或炉子效率为1(晚点将工作台和炉子效率加入计算)
不考虑传送带效率和堆叠
只考虑单一产物的情况
不考虑喷涂材料的消耗
M为某产物,Mn为原料
上游:原料的生产线
中游:当前配方的生产线
下游:需要当前产物作为原料的生产线
基本思路
一个产物的最优方案是固定的,而且只跟上游原料有关
增加产物可以整体缩减上游和中游制造台数量
增加速度可以缩减中游制造台数量
分析配方
x1*M1 + x2*M2 + x3*M3 + ... + xn*Mn → (经过t秒)→ yM
将这个过程变为1/y,则有
(x1/y)*M1 + (x2/y)*M2 + ... + (xn/y)*Mn →(经过t/y)秒→1M
总共使用t/y台制造台,缩短时间使得1秒完成
1台: (x1/y)*M1 + (x2/y)*M2 + ... + (xn/y)*Mn →(经过t/y)秒→1M
t/y台: (x1/y)*M1 + (x2/y)*M2 + ... + (xn/y)*Mn →1秒→1M
定义
α=提升产量的效率,这里取α=0.25
β=提升速度的效率,这里取β=1.00
定义f(M),为1秒1个产物M所需要的上游+中游的所有工作台数量
定义g(M),为1秒1个产物M所需要的上游工作台数量
定义h(M),为1秒1个产物M所需要的中游配方工作台数量
推导
对于当前配方
假如选择提升产量,则产物会从1变为1+α,换个角度思考,只需要1/(1+α)个制造台即可实现1个制造台的效果,即节省α/(1+α)的数量,定义A=α/(1+α)
加入选择提升速度,则产物会从1变为1+β,换个角度思考,只需要1/(1+β)个制造台即可实现1个制造台的效果,即节省β/(1+β)的数量,定义B=β/(1+β)
方程
f(M) = g(M) + h(M) //1秒1个产物M所需要的所有制造台数量=原材料所有制造台数量+自身配方中游所用的制造台数量。
g(M) = (x1/y)*f(M1) + (x2/y)*f(M2) + ... + (xn/y)*f(Mn) = SUM{ (xi/y)*f(Mi) }
h(M) = t/y
假设选择提升产量,节省的数量为A*(g(M) + h(M))
假设选择提升速度,节省的数量为B*(h(M))
即比较A*(g(M) + h(M))和B*(h(M))确定方案
两边消除
比较 A*g(M)和(B-A)*h(M)
除
比较 choice=g(M)-(B/A-1)*h(M)
设u=(B/A-1),代入A=α/(1+α)和B=β/(1+β),得到u=(β-α)/(α+αβ)=1.5
即比较choice=g(M)-u*h(M)是否>0,如果>0则增加产量划算,如果<0则增加速度划算
将choice展开,
choice=SUM{ (xi/y)*f(Mi) } - u*(t/y)
乘上y,用新的choice判断
choice=SUM{ xi * f(Mi) } - u*t
那么我们只需要原材料的f函数就能知道当前配方用哪个划算了,这里给出初始值。
f(所有矿物)=0,假设我们已经知道了所有原材料的f(Mi),我们需要更新我们的f(M)以供下游参考。
假如choice>=0,即选择增加产物,则
f‘(M) = f(M) / (1+α)
假如choice<0,即可选择增加速度,则
f‘(M) = f(M)- B*h(M) = f(M) - β/(1+β) * (t/y)
此时我们已经更新得到了优化后的f(M)=f'(M)
结论
1. [几何倍率] 工序越靠中下游,配方原料数量越多,增产越强(和原料的xi和f(Mi)有关)
2. [线性倍率] 配方时间越长,增速越强(和t相关)
增产强无敌,随着f函数的不断变大,choice>=0的可能性大大增加,
原矿到矿基本都是增速。
除非极端配方,都应该用增产。
实际上要硬扣的话,就按照我上面的计算方式,计算哪种方案更好,后续会发一个excel出来统计所有材料的最佳方案。
目前还没时间计算完,简单列了个处理器的方案。
可以基本认为,前期处理工序大多增加速度,后期处理工序大多增加产物,当然和配方也有关系,比如电路板的choice=0,也就是两种方案的理论炉子+制造台数量是一样的,但是增加产物还可以额外节约原矿。
例如:图中方案认为1秒产出1个处理器,至少需要炉子+制造台=9.6个
如果炉子和工作台的倍率不是1
那就缩短t即可,假设倍率为d
t'=t/d,使用t’进行计算,其他全部不变(也就是说增速的优势会进一步下降)
其他的增产剂对应的u值
1级 α=1/8;β=1/4;u=0.8
2级 α=1/5;β=1/2;u=1.0
3级 α=1/4;β=1/1;u=1.5
以上就是电脑114游戏给大家带来的关于戴森球计划增产攻略(增产和增速的全方位攻略)全部内容,更多攻略请关注电脑114游戏。
电脑114游戏-好玩游戏攻略集合版权声明:以上内容作者已申请原创保护,未经允许不得转载,侵权必究!授权事宜、对本内容有异议或投诉,敬请联系网站管理员,我们将尽快回复您,谢谢合作!